skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Solomon, Christopher T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2026
  2. The pace and trajectory of ecosystem development are governed by the availability and cycling of limiting nutrients, and anthropogenic disturbances such as acid rain and deforestation alter these trajectories by removing substantial quantities of nutrients via titration or harvest. Here, we use six decades of continuous chemical and hydrologic data from three adjacent headwater catchments in the Hubbard Brook Experimental Forest, New Hampshire—one deforested (W5), one CaSiO3-enriched (W1), and one reference (W6)—to quantify long-term nutrient and mineral fluxes. Acid deposition since 1900 drove pronounced depletion and export of base cations, particularly calcium, across all watersheds. Experimental deforestation of W5 intensified loss of biomass and nutrient cations and triggered sustained increases in streamwater pH, Ca2+, and SiO2exports over nearly four decades, greatly exceeding the effects of direct CaSiO3enrichment in both duration and magnitude. We detect no long-term changes in water yield or water flow paths in the experimental watersheds, and we attribute this multidecadal increase in weathering rates following deforestation to biological responses to severe nutrient limitation. Our evidence suggests that in the regrowing forest, plants are investing photosynthate into belowground processes that amplify mineral weathering to access phosphorus and micronutrients, consequently elevating the export of less limiting elements present in silicate parent material. Throughout decades of forest regrowth, enhanced biotic weathering has continued to deplete the acid buffering capacity of the terrestrial ecosystem while the export of weathering products has elevated the pH of the receiving stream. 
    more » « less
    Free, publicly-accessible full text available October 21, 2026
  3. This dataset comprises daily images positioned to view streams above the weirs at Hubbard Brook for watersheds 1, 2, 3, 4, 5, 6, and 9. Cameras are programmed to take one image per day at ~12:00 pm ET. Each file is timestamped with the image metadata, but also within the file name, and structured to enable temporal trend analysis for end-users. The cameras used are BUSHNELL model number 119R3, and data are collected on SIM cards and manually downloaded every six months. Data gaps are minimal and generally associated with battery failures. These data are designed to capture stream dynamics over time for the purpose of visual pattern analysis, environmental monitoring, and machine learning applications. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  4. This dataset contains species richness data for epiphytic diatom communities collected from weir ponds in seven headwater streams within the Hubbard Brook Experimental Forest (HBEF) in New Hampshire between 2018 and 2021. Diatom samples were gathered using artificial bryophyte substrates, deployed in weir ponds to mimic natural diatom habitats. Species richness was quantified by identifying diatom taxa to the lowest possible taxonomic level, with 86 taxa spanning 43 genera recorded. This dataset represents the first comprehensive classification of diatom communities at HBEF, providing a baseline for future studies in this ecosystem. Environmental variables, including light availability, dissolved organic carbon, total dissolved nitrogen, and pH, were concurrently measured to assess their influence on diatom community composition. The light (lux) data used in this study is openly available in the EDI Data Portal at https://doi.org/10.6073/pasta/0f40b75b299494d736645d940fa2b5a4. The chlorophyll-a data and analysis methodology are available at https://doi.org/10.6073/pasta/7fa32d94240fc7780d62cb7e65eafdb2. Reach characteristics were sourced from the EDI Data Portal at https://doi.org/10.6073/pasta/3e4b95149245341d522383bba51de7c7. This study provides valuable insights into the relationships between environmental factors and diatom diversity in northern hardwood forest streams, aiding ecological monitoring and bioindicator studies. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  5. Stream bryophytes (mosses and liverworts) are widely recognized as important macroinvertebrate habitats, but their overall role in the stream ecosystem, particularly in nutrient cycling, remains understudied. Hubbard Brook Experimental Forest in New Hampshire, USA, contains some of the most extensively researched streams in the world, yet few studies mention their bryophytes. Perhaps this is because early estimates place bryophyte coverage in these streams at an insignificant 2%. However, data from 2019 show that contemporary coverage ranges from 4 to 40% among streams. To investigate how stream bryophyte cover may be changing over time and influencing stream nutrient stocks, we conducted field surveys, measured the mass of organic and inorganic bryophyte contents, and quantified nutrient uptake with bottle incubations of bryophyte mats. This study marks a novel attempt to map stream bryophyte coverage with estimates of C, P, and N stocks and fluxes. From our 2022 field surveys, we found that median bryophyte coverage varied across streams in the same catchment (0–41.4%) and shifted from just 3 y prior. We estimate that these bryophyte mats stored between 14 and 414 g of organic matter per m2 of stream in the form of live biomass and captured particulates. Within 12 h of light incubation, 35 out of 36 bryophyte clump samples sorbed peak historical water-column concentrations of PO43– as measured in the Hubbard Brook stream chemistry record. In Bear Brook, our scaled estimate of bryophyte mat NO3– uptake (2.3 g N/y) constitutes a substantial portion of previously estimated whole-stream NO3– uptake (12 g N/y). Cumulatively, our data demonstrate that bryophytes and their associated mineral substrates and biota—known as the bryosphere—are crucial in facilitating headwater stream nutrient cycling. These bryospheres may contribute significantly to interannual variability in stream nutrient concentrations within nutrient-poor streams, especially in climate-sensitive regions. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  6. Abstract Catch‐and‐release (C&R) angling is often used to maintain high catch rates but fish vulnerability to capture may decrease following hooking, thereby decreasing angler catch per unit effort (CPUE) (hyperdepletion). To determine if fish post‐capture response affected recapture probability and population‐level CPUE, individual capture histories of Largemouth Bass in two lakes were compared before and after doubling angling effort in a Before‐After Control‐Impact (BACI) analysis. Previous capture and day‐of‐season both affected recapture probability. Counteracting effects of previous capture and reduced late‐season catch rates caused no hyperdepletion of angler CPUE. Our results highlight the complexity of fish behavioral responses to angling and suggest that hyperdepletion of angling catch rates may not be an issue in C&R fisheries. 
    more » « less